

1. The number of zeroes for a polynomial $p(x)$ where graph of $y = p(x)$ Fig. 2.1, is
(a) 3 (b) 4 (c) 0 (d) 5

2. The zeros of the quadratic polynomial $ax^2 + bx + c, c \neq 0$ are equal, then
(a) c and a have opposite signs (b) c and b have opposite signs
(c) c and a have the same sign (d) c and b have the same sign

3. If the sum of zeroes of polynomial $ax^2 + 5x - 3a$ is equal to their product, then find the value of a
(a) -5 (b) -3 (c) $-\frac{5}{3}$ (d) $\frac{5}{3}$

4. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 - 4x + 3$, then the value of $\alpha^4\beta^3 + \alpha^3\beta^4$ is
(a) 104 (b) 108 (c) 112 (d) 5

5. The quadratic polynomial, the sum of whose zeroes is -5 and their product is 6 , is
(a) $x^2 + 5x + 6$ (b) $x^2 - 5x + 6$ (c) $x^2 - 5x - 6$ (d) $-x^2 + 5x + 6$

6. The value of k such that the polynomial $x^2 - (k+6)x + 2(2k-1)$ has sum of its zeroes equal to half of their product is
(a) -4 (b) 4 (c) -7 (d) 7

7. The number of polynomials having zeroes as -2 and 5 is
(a) 1 (b) 2 (c) 3 (d) more than 3

8. If α and β are the zeroes of $4x^2 + 3x + 7$, then the value of $\frac{1}{\alpha} + \frac{1}{\beta}$ is
(a) $-\frac{8}{7}$ (b) $-\frac{3}{7}$ (c) $\frac{2}{7}$ (d) $\frac{6}{8}$

9. If the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$ are 2 and -3 , then
(a) $a = -7, b = -1$ (b) $a = 5, b = -1$ (c) $a = 2, b = -6$ (d) $a = 0, b = -6$

10. If α and β are zeroes of the polynomial $x^2 - p(x+1) + c$ such that $(\alpha+1)(\beta+1) = 0$, then the value of c is
(a) -2 (b) 2 (c) -1 (d) 1

11. If one of the zeroes of the quadratic polynomial $x^2 + 3x + k$ is 2 , then the value of k is
(a) 10 (b) -10 (c) -7 (d) -2

12. The graph of a quadratic polynomial is.....
(a) straight line (b) parabola (c) hyperbola (d) None of these

13. If α and β are the zeroes of the polynomial $2y^2 + 7y + 5$, then the value of $\alpha + \beta + \alpha\beta$ is
(a) -1 (b) 0 (c) 1 (d) 2

14. If one of the zeroes of the quadratic polynomial $(k-1)x^2 + kx + 1$ is -3 , then the value of k is
(a) $\frac{4}{3}$ (b) $-\frac{4}{3}$ (c) $\frac{2}{3}$ (d) $-\frac{2}{3}$

15. If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 + x - 2$, then the polynomial whose zeroes are $2\alpha + 1$ and $2\beta + 1$ is
(a) $x^2 + 9$ (b) $x^2 - 4$ (c) $x^2 - 9$ (d) $x^2 + 4$

16. If zeroes α and β of a polynomial $x^2 - 7x + k$ are such that $\alpha - \beta = 1$, then the value of k is
(a) 21 (b) 12 (c) 9 (d) 8

