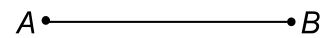


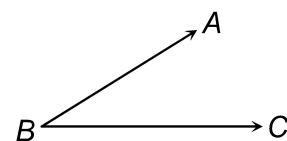
1. BASIC TERMS AND DEFINITIONS

Line Segment : The part of a line with two end points is called a line segment.



Ray : The part of a pair of line with one end point is called a ray

Angle : An angle is the union of two non-collinear rays with a common initial point.



1.1 TYPES OF ANGLES

Acute angle : An angle measures between 0° and 90° .

Obtuse angle : An angle measures between 90° and 180° .

Right angle : An angle measures exactly equal to 90° .

Straight angle : An angle measures exactly equal to 180° .

Reflex angle : An angle measures between 180° and 360° .

Adjacent angle : Two angles are said to be adjacent angles if they have same vertex, a common arm and are non-overlapping.

Complementary angles : Two angles whose sum is 90° are called complementary angles.

Supplementary angles : Two angles whose sum is 180° are called supplementary angles.

Vertically opposite angles : The pair of angles formed when two lines intersect at a point.

Collinear points : Three or more points are said to be collinear if they lie on the same line.

1.2 PAIRS OF ANGLES

Axiom 1 : If a ray stands on a line, then the sum of two adjacent angles so formed is 180° . When the sum of two adjacent angles is 180° , then they are called as **linear pair of angles**.

Axiom 2 : If the sum of two adjacent angles is 180° , then the non-common arms of the angles form a line.

The two axioms above together is called the **Linear Pair Axiom**.

Theorem 1 : If two lines intersect each other then the vertically opposite angles are equal.

Given : Two lines AB and CD intersect at a point O .

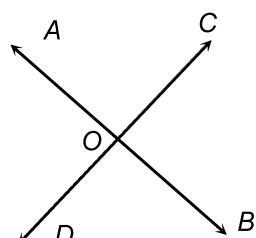
To prove :

$$(i) \quad \angle AOC = \angle DOB$$

$$(ii) \quad \angle BOC = \angle AOD$$

Proof : Since ray OD stands on line AB

$$\therefore \angle AOD + \angle BOD = 180^\circ \quad \dots (i) \text{ [linear pair]}$$



Again, ray OA stands on line CD

$$\therefore \angle AOD + \angle AOC = 180^\circ \quad \dots (ii) \text{ [linear pair]}$$

From equation (i) and (ii), we have

$$\angle AOD + \angle BOD = \angle AOD + \angle AOC$$

$$\Rightarrow \angle BOD = \angle AOC$$

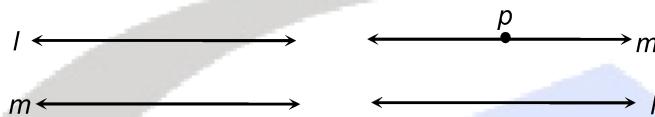
$$\text{Thus, } \angle AOC = \angle DOB$$

Similarly we can prove that

$$\angle BOC = \angle AOD$$

2. PARALLEL LINES AND THEIR PROPERTIES

Parallel lines : Two lines in a plane, that is, the co-planar lines whose intersection is empty are said to be parallel lines



2.1 ANGLES MADE BY A TRANSVERSAL WITH TWO LINES

Definition:

Transversal : A line which intersects two or more given lines at distinct points, is called a “Transversal” of the given lines.

In the adjoining figure, AB and CD are given two lines and a transversal LM intersects them at points P and Q respectively.

Corresponding angles : Two angles on the same side of a transversal are known as the **corresponding angles** if both lies either above the two lines or below the two lines.

For example

(i) $\angle 1$ and $\angle 5$	(ii) $\angle 4$ and $\angle 8$
(iii) $\angle 2$ and $\angle 6$	(iv) $\angle 3$ and $\angle 7$

Alternate interior angles : The following pairs of angles are called the pairs of alternate interior angles.

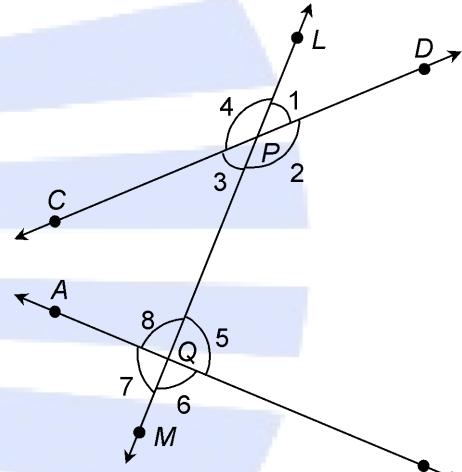
For example

(i) $\angle 3$ and $\angle 5$	(ii) $\angle 2$ and $\angle 8$
-------------------------------	--------------------------------

Consecutive interior angles : The pairs of interior angles on the same side of the transversal are called pairs of consecutive interior angles.

For example

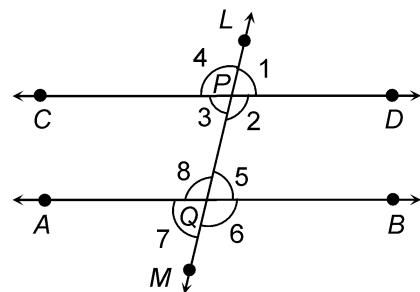
(i) $\angle 2$ and $\angle 5$	(ii) $\angle 3$ and $\angle 8$
-------------------------------	--------------------------------



Axiom 3 : If a transversal intersects two parallel lines, then each pair of corresponding angles is equal.

Axiom 4 : If a transversal intersects two lines such that a pair of corresponding angles is equal, then the two lines are parallel to each other.

Theorem 2 : If a transversal intersects two parallel lines, then each pair of alternate interior angles is equal.



Theorem 3 : If a transversal intersects two lines such that a pair of alternate interior angles is equal, then the two lines are parallel.

Theorem 4 : If a transversal intersects two parallel lines, then each pair of interior angles on the same side of the transversal is supplementary.

Theorem 5 : If a transversal intersects two lines such that a pair of interior angles on the same side of the transversal is supplementary then the two lines are parallel.

2.2 LINES PARALLEL TO THE SAME LINE

Theorem 6 : Lines which are parallel to the same line are parallel to each other.

3. ANGLE SUM PROPERTY OF A TRIANGLE

Theorem 7 : Angles sum property of a triangle.

The sum of three angles of a triangle is 180.

Given : A triangle ABC

To Prove : $\angle 2 + \angle 5 + \angle 4 = 180^\circ$

Construction : Through A, draw a line 'm' parallel to BC

Proof : Since $m \parallel BC$ and transversal AB intersects at A and B respectively,

therefore we have

$$\angle 1 = \angle 5 \quad \dots(i) \quad [\text{alternate angles}]$$

Similarly, $m \parallel BC$ and the transversal AC intersects them at A and C respectively.

$$\text{So, } \angle 3 = \angle 4 \quad \dots(ii) \quad [\text{alternate angles}]$$

Adding equation (i) and (ii), we have

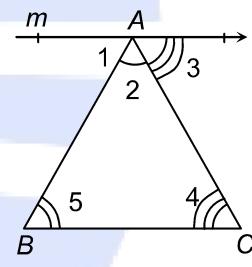
$$\angle 1 + \angle 3 = \angle 5 + \angle 4$$

Adding $\angle 2$ to both sides, we have

$$\angle 1 + \angle 2 + \angle 3 = \angle 5 + \angle 4 + \angle 2$$

$$\text{But, } \angle 1 + \angle 2 + \angle 3 = 180^\circ \quad [\text{Linear pair}]$$

$$\text{Hence, } \angle 2 + \angle 5 + \angle 4 = 180^\circ \quad [\text{proved}]$$



Theorem 8 : Exterior angle theorem

If a side of a triangle is produced, the exterior angle so formed is equal to the sum of the two interior opposite angles.

Given : A triangle ABC. D is a point on BC produced, forming exterior $\angle ACE$.

To prove : $\angle ACD = \angle BAC + \angle ABC$

Proof : In $\triangle ABC$

We have $\angle 1 + \angle 2 + \angle 3 = 180^\circ$ [Angle sum property] ... (i)

Also $\angle 2 + \angle 4 = 180^\circ$ [linear pair] ... (ii)

From (i) and (ii), we get

$$\angle 1 + \angle 2 + \angle 3 = \angle 2 + \angle 4$$

$$\Rightarrow \angle 1 + \angle 3 = \angle 4$$

Hence $\angle 4 = \angle 1 + \angle 3$

$$\text{or } \angle ACD = \angle BAC + \angle ABC$$

Corollary 1 : An exterior angle of a triangle is greater than either of the interior opposite angles.

Proof : Let ABC be a triangle whose side BC is produced to form exterior angle $\angle 4$

$$\text{Thus } \angle 1 + \angle 3 = \angle 4$$

$$\Rightarrow \angle 4 > \angle 1 \text{ and } \angle 4 > \angle 3$$

