

1. CONGRUENCE OF TRIANGLES

Two Δ s are congruent, if there exists a correspondence between their vertices such that the corresponding sides and the corresponding angles of the two Δ s are equal or congruent.

1.1 CONGRUENCE RELATION

- (i) Every Δ is congruent to itself i.e. $\Delta ABC \cong \Delta ABC$
- (ii) If $\Delta ABC \cong \Delta DEF$
then $\Delta DEF \cong \Delta ABC$
- (iii) If $\Delta DEF \cong \Delta ABC$, and
then $\Delta DEF \cong \Delta PQR$ then
 $\Delta ABC \cong \Delta PQR$

1.2 CONGRUENCE OF TRIANGLES

1.2.1 Side-angle-side congruence criterion

Theorem 1 : Two triangles are congruent if two sides and the included angle of one are equal to the corresponding sides and the included angle of the other triangle.

2. ANGLE-SIDE-ANGLE (ASA) CONGRUENCE CRITERION

Theorem 2 : Two triangles are congruent if two angles and the included side of one triangle are equal to the corresponding two angles and the included side of the other triangle.

Given : Two Δ s ABC and DEF such that $\angle B = \angle E$, $\angle C = \angle F$ and $BC = EF$

To prove : $\Delta ABC \cong \Delta DEF$

Proof : There are three possibilities

Case I : When $AB = DE$:

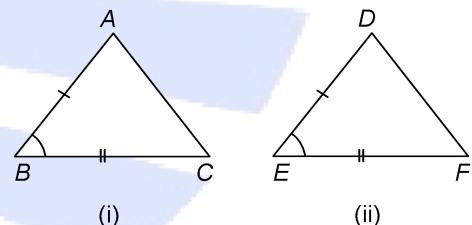
In this case, we have

$$AB = DE$$

$$\angle B = \angle E$$

and, $BC = EF$

So, by SAS criterion of congruence, we have



$$\Delta ABC \cong \Delta DEF$$

Case II : When $BA < ED$

In this case take a point G on ED such that $EG = BA$. Join GF .

Now, in Δ s ABC and GEF , we have

$$BA = GE$$

[Assumed]

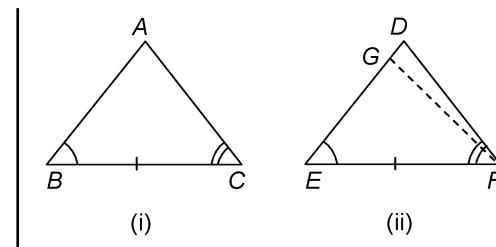
$$\angle B = \angle E$$

[Given]

and, $BC = EF$

[Given]

So, by SAS criterion of congruence, we have



$$\Delta ABC \cong \Delta GEF$$

$$\Rightarrow \angle ACB = \angle GFE$$

[cpct]

But, $\angle ACB = \angle DFE$ [Given]

$\therefore \angle GFE = \angle DFE$

This is possible only when ray FG coincides with ray FD or G coincides with D .

Therefore, BA must be equal to ED .

Thus, in ΔABC and ΔDEF , we have

$$AB = DE \quad [\text{As proved above}]$$

$$\angle B = \angle E \quad [\text{Given}]$$

$$\text{and, } BC = EF \quad [\text{Given}]$$

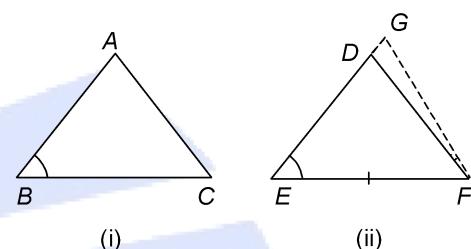
So, by SAS criterion of congruence, we have

$$\Delta ABC \cong \Delta DEF$$

Case III : when $BA > ED$

In this case take a point G on ED produced such that $EG = BA$. Join GF . Now, proceeding as in case II, we prove that

$$\Delta ABC \cong \Delta DEF$$



Hence, in all the three cases, we have $\Delta ABC \cong \Delta DEF$

3. ANGLE- ANGLE-SIDE (AAS) CONGRUENCE CRITERION

Theorem 3 : If any two angles and a non-included side of one triangle are equal to the corresponding angles and side of another triangle, then the two triangles are congruent.

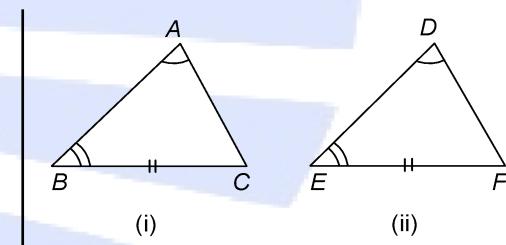
Given : Two Δ s ABC and DEF such that

$$\angle A = \angle D, \angle B = \angle E, BC = EF$$

To prove : $\Delta ABC \cong \Delta DEF$

Proof : We have,

$$\angle A = \angle D, \text{ and } \angle B = \angle E$$



$$\Rightarrow \angle A + \angle B = \angle D + \angle E$$

$$\Rightarrow 180^\circ - \angle C = 180^\circ - \angle F \quad [\text{Angle sum property}]$$

$$\Rightarrow \angle C = \angle F \quad \dots (i)$$

Thus, in ΔABC and ΔDEF , we have

$$\angle A = \angle D, \angle B = \angle E \text{ and } \angle C = \angle F$$

Now, in ΔABC and ΔDEF , we have

$$\angle B = \angle E \quad [\text{Given}]$$

$$BC = EF \quad [\text{Given}]$$

$$\text{and, } \angle C = \angle F \quad [\text{From (i)}]$$

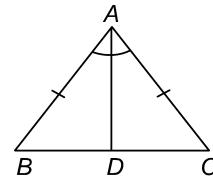
So, by ASA criterion of congruence, $\Delta ABC \cong \Delta DEF$

Theorem 4 : Angles opposite to equal sides of an isosceles triangle are equal.

Given : An isosceles triangle ABC in which $AB = AC$.

To prove : $\angle B = \angle C$.

Construction : Draw the bisector of $\angle A$ and let D be the point of intersection of this bisector of $\angle A$ and BC .



Proof : In ΔBAD and ΔCAD

$$AB = AC \quad \text{[Given]}$$

$$\angle BAD = \angle CAD \quad \text{[By construction]}$$

$$AD = AD \quad \text{[Common]}$$

$$\Delta BAD \cong \Delta CAD \quad \text{[By SAS Congruency]}$$

$$\angle ABD = \angle ACD \quad \text{[cpct]}$$

$$\therefore \angle B = \angle C$$

Theorem 5 : If two angles of a triangle are equal, then sides opposite to them are also equal.

Given : A ΔABC in which $\angle B = \angle C$

To prove : $AC = AB$

Construction : Draw the bisector of $\angle A$ and let it meet BC at D .

Proof : In $\Delta s ABD$ and ACD , we have

$$\angle B = \angle C \quad \text{[Given]}$$

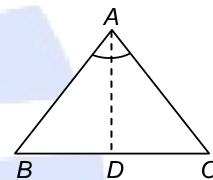
$$\angle BAD = \angle CAD \quad \text{[By construction]}$$

$$AD = AD \quad \text{[Common]}$$

So, by SAS criterion of congruence, we have

$$\Delta ABD \cong \Delta ACD$$

$$\Rightarrow AB = AC \quad \text{[cpct]}$$



4. SIDE-SIDE-SIDE(SSS) CONGRUENCE CRITERION

Theorem 6 : Two triangles are congruent if the three sides of one triangle are equal to the corresponding three sides of the other triangle.

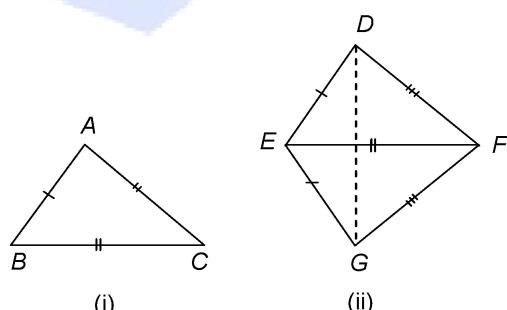
Given : Two $\Delta s ABC$ and DEF such that

$$AB = DE, BC = EF \text{ and } AC = DF.$$

To prove : $\Delta ABC \cong \Delta DEF$

Construction : Suppose BC is the longest side. Draw EG such that $\angle FEG = \angle ABC$ and $EG = AB$. Join GF and GD .

Proof : In $\Delta s ABC$ and GEF , we have



$$BC = EF \quad \text{[Given]}$$

$$AB = GE \quad \text{[By construction]}$$

$$\text{and, } \angle ABC = \angle FEG \quad \text{[By construction]}$$

So, by SAS criterion of congruence, we have

$$\triangle ABC \cong \triangle GEF$$

$$\Rightarrow \angle A = \angle G \text{ and } AC = GF \quad [\text{c.p.c.t.}]$$

$$\text{Now, } AB = DE \text{ and } AB = GE \quad \dots(\text{i})$$

$$\Rightarrow DE = GE$$

$$\text{Similarly, } AC = DF \text{ and } AC = GF \quad \dots(\text{ii})$$

$$\Rightarrow DF = GF$$

In $\triangle EGD$, we have

$$DE = GE$$

$$\Rightarrow \angle EGD = \angle EGD \quad [\text{From (i)}]$$

In $\triangle FGD$, we have

$$DF = GF$$

$$\Rightarrow \angle FDG = \angle FGD \quad [\text{From (ii)}]$$

From (iii) and (iv), we have

$$\angle EGD + \angle FDG = \angle EGD + \angle FGD$$

$$\Rightarrow \angle D = \angle G$$

$$\text{But, } \angle G = \angle A \quad [\text{Proved above}]$$

$$\therefore \angle A = \angle D \quad \dots(\text{v})$$

Thus, in $\triangle ABC$ and $\triangle DEF$, we have

$$AB = DE$$

[Given]

$$\angle A = \angle D$$

[From (v)]

$$\text{and, } AC = DF$$

[Given]

So, by SAS criterion of congruence, we have

$$\triangle ABC \cong \triangle DEF$$

5. RIGHT ANGLE-HYPOTENUSE-SIDE (RHS) CONGRUENCE CRITERION

Theorem 7 : Two right triangles are congruent if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of the other triangle.

Given : Two right angles ABC and DEF in which $\angle B = \angle E = 90^\circ$, $AC = DF$, $BC = EF$

To prove : $\triangle ABC \cong \triangle DEF$

Construction : Produce DE to G so that $EG = AB$. Join GF

Proof : In $\triangle ABC$ and $\triangle GEF$, we have

$$AB = GE \quad [\text{By construction}]$$

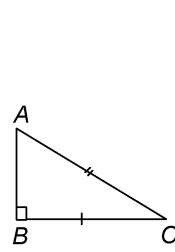
[By construction]

$$\angle B = \angle FEG \quad [\text{Both } 90^\circ]$$

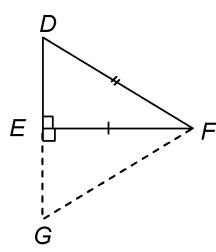
$$\text{and, } BC = EF \quad [\text{Given}]$$

So, by SAS criterion of congruence, we have

$$\triangle ABC \cong \triangle GEF$$



(i)



(ii)

Now, $AC = GF$ [cpct] ... (ii)
 and, $AC = GF$ [From (ii)]
 $\therefore AC = DF$ [Given]
 $\therefore DF = GF$
 $\Rightarrow \angle D = \angle G$ [Angles opposite to equal sides] ... (iii)
 From (i) and (iii), we get
 $\angle A = \angle D$... (iv)

Thus, in ΔABC and ΔDEF , we have

$\angle A = \angle D$ [From (iv)]
 $\angle B = \angle E$ [Both 90°]
 $\Rightarrow \angle A + \angle B = \angle D + \angle E$
 $\Rightarrow 180^\circ - \angle C = 180^\circ - \angle F$ [Angle sum property]
 $\Rightarrow \angle C = \angle F$... (v)

Now, in ΔABC and ΔDEF , we have

$BC = EF$ [Given]
 $\angle C = \angle F$ [From (v)]
 and, $AC = DF$

So, by SAS criterion of congruence, we have

$$\Delta ABC \cong \Delta DEF$$

6. INEQUALITIES IN A TRIANGLE

Theorem 8: If two sides of a triangle are unequal, the longer side has greater angle opposite to it.

Given : A ΔABC in which $AC > AB$

To prove : $\angle ABC > \angle ACB$

Construction : Mark a point D on AC such that $AB = AD$. Join BD .

Proof : In ΔABD , we have

$AB = AD$ [By construction]
 $\Rightarrow \angle 1 = \angle 2$ [Angles opp. to equal sides are equal] ... (i)

$\angle 2$ is the exterior angle of ΔBCD and an exterior angle is always greater than interior opposite angle. Therefore,

$$\angle 2 > \angle DCB$$

$\Rightarrow \angle 2 > \angle ACB$ [$\angle ACB = \angle DCB$] ... (ii)

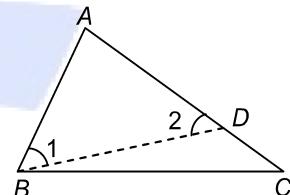
From (i) and (ii), we have

$\Rightarrow \angle 1 > \angle ACB$... (iii)

$\therefore \angle ABC > \angle 1$... (iv)

From (iii) and (iv), we get

$$\angle ABC > \angle ACB$$



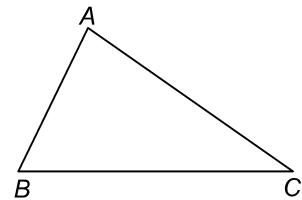
Theorem 9 : In a triangle the greater angle has the longer side opposite to it.

Given : A $\triangle ABC$ in which $\angle ABC > \angle ACB$

To prove : $AC > AB$

Proof : In $\triangle ABC$, we have the following three possibilities

(i) $AC = AB$



(ii) $AC < AB$

(iii) $AC > AB$

Case I : When $AC = AB$

$$AC = AB$$

$$\Rightarrow \angle ABC = \angle ACB \quad [\text{Angle opp. to equal sides are equal}]$$

This is a contradiction,

$$\text{Since } \angle ABC > \angle ACB \quad [\text{Given}]$$

$$\therefore AC \neq AB$$

Case II : When $AC < AB$

$$\text{if } \angle AC < AB$$

$$\Rightarrow \angle ACB > \angle ABC \quad [\text{Longer sides has the greater angle opposite to it}]$$

This is also a contradiction

\therefore We are left with the only possibility, $AC > AB$, which must be true

Hence, $AC > AB$

Theorem 10 : The sum of any two sides of a triangle is greater than the third side.

Given : A $\triangle ABC$

To prove : $AB + AC > BC$, $AB + BC > AC$ and $BC + AC > AB$

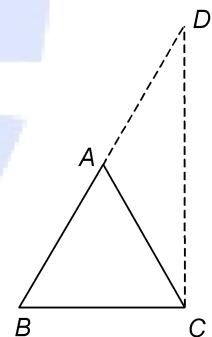
Construction : Produce side BA to D such that $AD = AC$. Join CD

Proof : In $\triangle ACD$, we have

$$AC = AD \quad [\text{By construction}]$$

$$\Rightarrow \angle ADC = \angle ACD \quad [\text{Angles opp. to equal sides are equal}]$$

$$\Rightarrow \angle ACD = \angle ADC$$



$$\Rightarrow \angle BCA + \angle ACD > \angle ADC \quad [\text{ } \angle BCA + \angle ACD > \angle ACD]$$

$$\Rightarrow \angle BCD > \angle ADC$$

$$\Rightarrow \angle BCD > \angle BDC \quad [\text{ } \angle ADC = \angle BDC]$$

$$\Rightarrow BD > BC \quad [\text{ } \text{Side opp. to greater angle is larger}]$$

$$\Rightarrow BA + AD > BC$$

$$\Rightarrow BA + AC > BC \quad [\text{ } AC = AD \text{ (By construction)}]$$

$$\Rightarrow AB + AC > BC$$

Thus, $AB + AC > BC$

Similarly, $AB + BC > AC$ and $BC + AC > AB$