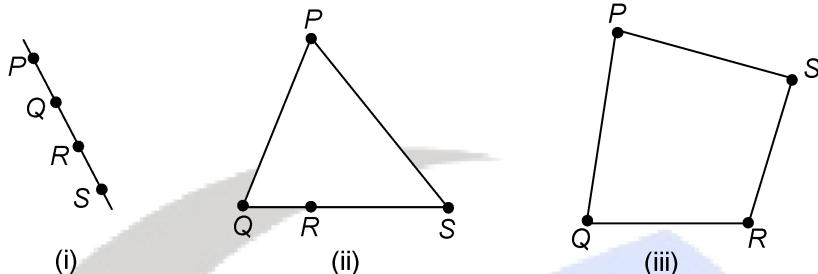


1. INTRODUCTION

When three non-collinear points on a sheet of paper are joined in pairs, the closed figure so obtained is a triangle.

Now take four distinct points on a sheet of paper and join these points in pairs. The possible type of figure made are as below :



Case 1. When all the four points are collinear as shown in figure (i) we get a line segment. Here in figure, line segment PS is made.

Case 2. When three points out of the four points are collinear, we get a triangle as shown in figure (ii).

Case 3. When no three points out of the four points are collinear, we get a closed figure with four sides, four angles and four vertices as shown in figure (iii). Such closed figure is called quadrilateral.

A closed figure having four sides, four angles and four vertices is called a **quadrilateral**.

1.1 ANGLE SUM PROPERTY OF A QUADRILATERAL

Theorem 1 : The sum of the four angles of a quadrilateral is 360° .

We have quadrilateral $PQRS$. PR is its one diagonal.

From ΔPQR ,

$$\angle 1 + \angle 3 + \angle Q = 180^\circ \quad \dots(i)$$

From ΔPSR ,

$$\angle 2 + \angle 4 + \angle S = 180^\circ \quad \dots(ii)$$

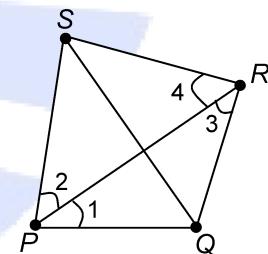
Adding (i) and (ii), we have

$$(\angle 1 + \angle 2) + (\angle 3 + \angle 4) + \angle Q + \angle S = 180^\circ + 180^\circ$$

$$\Rightarrow \angle QPS + \angle QRS + \angle Q + \angle S = 360^\circ$$

$$\Rightarrow \angle P + \angle R + \angle Q + \angle S = 360^\circ$$

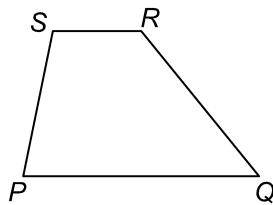
$$\text{i.e., } \angle P + \angle Q + \angle R + \angle S = 360^\circ$$



1.2 TYPES OF QUADRILATERALS

1.2.1 Trapezium

If one pair of opposite sides of a quadrilateral are parallel, then the quadrilateral is called a trapezium. In figure $PQ \parallel RS$ and therefore, the quadrilateral $PQRS$ is a trapezium.



1.2.2 Parallelogram

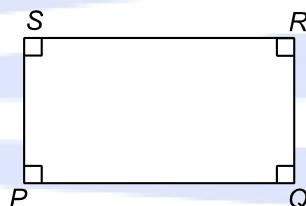
If both pairs of opposite sides of a quadrilateral are parallel, then the quadrilateral is a parallelogram. In figure $PQ \parallel RS$ and $QR \parallel PS$.

Therefore, the quadrilateral $PQRS$ is a parallelogram.

1.2.3 Rectangle

In a parallelogram, if one angle is right angle, then the quadrilateral is called a rectangle.

In figure $PQ \parallel SR$, $PS \parallel RQ$ and $\angle P = \angle Q = \angle R = \angle S = 90^\circ$

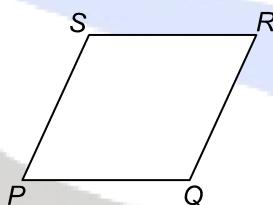


Here, quadrilateral $PQRS$ is a rectangle.

1.2.4 Rhombus

In a parallelogram if all the four sides be equal, then the quadrilateral is a rhombus.

In figure $PQ \parallel SR$, $PS \parallel RQ$ and $PQ = SR = PS = RQ$



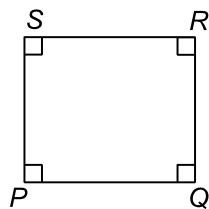
Here, quadrilateral $PQRS$ is a rhombus.

1.2.5 Square

In a quadrilateral if all the four sides are equal and one angle is right angle, then all the other three angles are also right angles. Such a quadrilateral is called a square.

In figure $PQ = SR = PS = RQ$

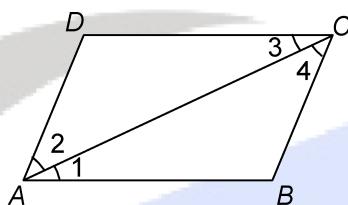
and $\angle P = \angle Q = \angle R = \angle S = 90^\circ$



Here, quadrilateral $PQRS$ is a square.

Theorem 2 : A diagonal of a parallelogram divides it into two congruent triangles.

Given : AC is a diagonal of the parallelogram $ABCD$ as shown in figure.



To prove : $\triangle ABC \cong \triangle CDA$.

Proof : We have $AB \parallel CD$ [Opposite sides of parallelogram $ABCD$]

$\Rightarrow \angle 1 = \angle 3$... (i) [Alternate angles with transversal AC]

Now, $BC \parallel AD$ [Opposite sides of parallelogram $ABCD$]

$\Rightarrow \angle 2 = \angle 4$... (ii) [Alternate angles with transversal AC]

In $\triangle ABC$ and $\triangle CDA$, we have

$\angle 1 = \angle 3$ [From (i)]

$\angle 2 = \angle 4$ [From (ii)]

and $AC = CA$ [Common]

$\therefore \triangle ABC \cong \triangle CDA$ [By ASA Congruence]

Hence the theorem is proved.

1.3 NECESSARY CONDITIONS OF A PARALLELOGRAM

Theorem 3 : In a parallelogram, opposite sides are equal.

Theorem 4 : In a parallelogram, opposite angles are equal.

Theorem 5 : The diagonals of a parallelogram bisect each other.

1.4 SUFFICIENT CONDITIONS FOR A QUADRILATERAL TO BE PARALLELOGRAM

Theorem 6 : (Converse of Theorem 2). If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram.

Theorem 7 : (Converse of Theorem 3). If in a quadrilateral, each pair of opposite angles is equal, then it is a parallelogram.

Theorem 8 : (Converse of Theorem 4). If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.

Theorem 9 : A quadrilateral is a parallelogram if a pair of opposite sides is equal and parallel.

2. MID POINT THEOREM FOR A TRIANGLE

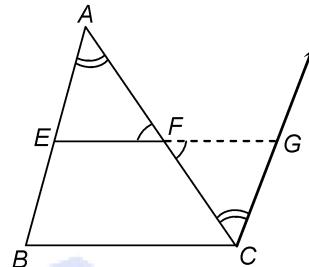
Theorem 10 : The line segment joining the mid-points of two sides of a triangle is parallel to the third side and equal to half of it.

Given : E and F are the mid-points of the sides AB and AC respectively of the $\triangle ABC$ (figure).

To prove : $EF \parallel BC$ and $EF = \frac{1}{2} BC$

Construction : Through the vertex C , CG is drawn parallel to AB and it meets EF (produced) at G .

Proof : In $\triangle CGF$ and $\triangle AEF$, we have



Therefore,

$$AF = CF \quad [\because F \text{ is mid-point of } AC]$$

$$\angle AFE = \angle CFG \quad [\text{Vertically opposite angles}]$$

$$\angle EAF = \angle GCF \quad [\text{Alternate angles}]$$

$$\triangle AEF \cong \triangle CGF \quad [\text{By SAS congruence}]$$

\Rightarrow

$$AE = CG \quad \dots(i) \quad [\text{cpct}]$$

$$EF = FG \quad \dots(ii) \quad [\text{cpct}]$$

Also,

$$AE = BE \quad \dots(iii) \quad [\because E \text{ is mid-point of } AB]$$

From (i) and (ii),

$$BE = CG$$

Also, by construction

$$BE \parallel CG$$

Therefore, $BCGE$ is a parallelogram.

$\Rightarrow EG \parallel BC$

$\Rightarrow EF \parallel BC$

$$\Rightarrow BC = EG = EF + FG = EF + EF \quad [\text{From (ii)}]$$

$$= 2 EF$$

$$\Rightarrow 2 EF = BC$$

$$\Rightarrow 2 EF = BC$$

$$\Rightarrow EF = \frac{1}{2} BC$$

Hence, the theorem is proved.

Theorem 11 : (Converse of theorem 10) The line drawn through the mid-point of one side of a triangle, parallel to another side bisects the third side.