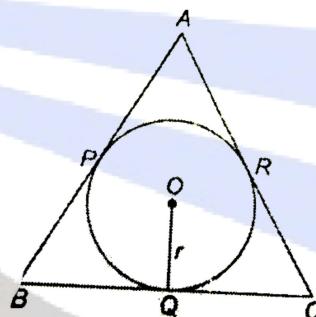
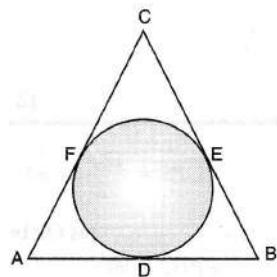


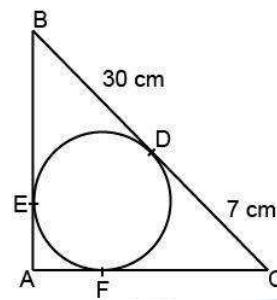
M.M.: 20
Time: 30 min
General Instructions:


- There are 10 questions in this paper. Each question carry 2 marks.
- All questions are compulsory.

- Figure, XP and XQ are tangents from X to the circle with centre O , R is a point on the circle.


Prove that, $XA + AR = XB + BB$.

- From an external point P , two tangents PA and PB are drawn to a circle with centre O . At one point E on the circle tangent is drawn which intersects PA and PB at C and D respectively. If $PA = 10\text{cm}$, find the perimeter of $\triangle PCD$.
- In Figure, the sides AB , BC and CA of triangle ABC touch a circle with centre O and radius r at P , Q and R respectively.



- Two tangents TP and TQ are drawn to a circle with centre O from an external point T . Prove that $\angle PTQ = 2\angle OPQ$.
- PQ is a chord of length 8cm of a circle of radius 5cm . The tangents at P and Q intersect at a point T . Find the length TP .
- A circle is inscribed in a $\triangle ABC$ having sides $8\text{cm}, 10\text{cm}$ and 12cm as shown in Figure. Find AD , BE and CF .

7. If from an external point B of a circle with centre O , two tangents BC and BD are drawn such that $\angle DBC = 120^\circ$, prove that $BO = 2BC$.

8. In Fig. BDC is a tangent to the given circle at point D such that $BD = 30\text{ cm}$ and $CD = 7\text{ cm}$. The other tangents BE and CF are drawn respectively from B and C to the circle and meet when produced at A making BAC a right angle triangle. Calculate (i) AF (ii) radius of the circle.

9. From a point P two tangents PA and PB are drawn to a circle with centre at O . If $OP = 2r$, show that $\triangle PAB$ is equilateral.

10. A triangle PQR is drawn to circumscribe a circle of radius 8 cm such that the segments QT and TR , into which QR is divided by the point of contact T , are of lengths 14 cm and 16 cm respectively. If area of $\triangle PQR$ is 336 cm^2 , find the sides PQ and PR .