

PARALLELOPIPED

It can also be called a rectangular parallelepiped. A cuboid has 12 edges and 8 vertices. Let us assume length, breadth, height of a cuboid be ℓ (length), b (width) and h (height) respectively.

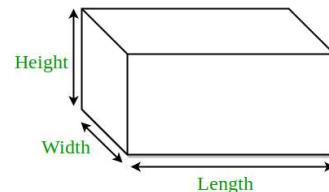
Formulae:

(a) Total surface area = $2(\ell b + bh + \ell h)$ square units,

(b) Volume = $(\ell b h)$ cubic units

(c) Length of the diagonal = $\sqrt{\ell^2 + b^2 + h^2}$ units

(d) Area of 4 walls of a room = $[2(\ell + b) \times h]$ square units


CUBES

If all the edges of cube are equal in length, it is called a cube.

For a cube, $\ell = b = h = a$ where a = length of the each edge of the cube

Formulae:

(a) Total Surface Area = $6a^2$ square units.

(b) Volume = a^3 cubic units.

(c) Length of the diagonal = $\sqrt{3} a$ units.

RIGHT CIRCULAR CYLINDER

For a right circular cylinder of base radius r and height (or length) h , we have

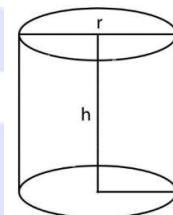
(i) Area of each end = Area of base = πr^2

(ii) Curved surface area = $2\pi r h$

$$= 2\pi r \times h = \text{Perimeter of the base} \times \text{Height}$$

(iii) Total surface area = Curved surface area + Area of circular ends

$$= 2\pi r h + 2\pi r^2 = 2\pi r (h + r)$$



(iv) Volume = $\pi r^2 h$ = Area of the base \times Height

RIGHT CIRCULAR HOLLOW CYLINDER

Let R and r be the external and internal radii of a hollow cylinder of height h . Then,

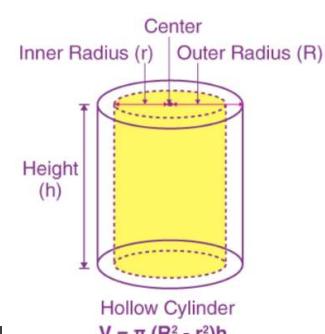
(i) Area of each end = $\pi(R^2 - r^2)$

(ii) Curved surface area of hollow cylinder

$$= \text{External surface area} + \text{Internal surface area}$$

$$= 2\pi Rh + 2\pi rh$$

$$= 2\pi(R + r)h$$



(iii) Total surface area = $2\pi Rh + 2\pi rh + 2(\pi R^2 - \pi r^2)$

$$= 2\pi h(R+r) + 2\pi(R+r)(R-r)$$

$$= 2\pi(R+r)(R+h-r)$$

(iv) Volume of material = External volume – Internal volume

$$= \pi R^2 h - \pi r^2 h = \pi(R^2 - r^2)h$$

RIGHT CIRCULAR CONE

A right circular cone is the solid generated by rotating a right angled triangle

Formulae:

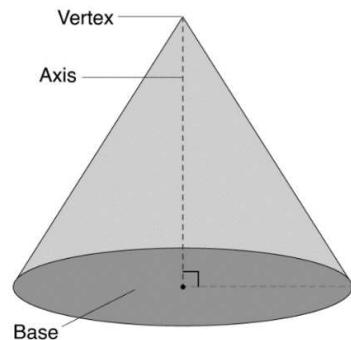
For a right circular cone of height h , base radius r and slant height ℓ .

(a) Volume = $\frac{1}{3}\pi r^2 h$

(b) Curved surface area = $\pi r \ell$

(c) Total surface area = curved surface area + Base surface area

$$= \pi r + \pi r^2 = \pi r(\ell + r)$$



Note: ℓ, r, h are related as: $\ell = \sqrt{r^2 + h^2}$ (Pythagoras theorem)

SPHERE

For a sphere of radius r , we have

(i) Surface area = $4\pi r^2$

(ii) Volume = $\frac{4}{3}\pi r^3$

For a hemisphere of radius r , we have

(i) Surface area = $2\pi r^2$

(ii) Total surface area = $2\pi r^2 + \pi r^2 = 3\pi r^2$

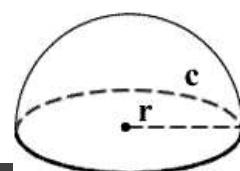
(iii) Volume = $\frac{2}{3}\pi r^3$

HEMISPHERE

A plane through the centre of a sphere cuts it into two equal halves called hemispheres.

Formulae:

(a) Volume = $\frac{2}{3}\pi r^3$



(b) Curved Surface Area = $2\pi r^2$

(c) Total Surfaces Area = $2\pi r^2 + r^2 = 3\pi r^2$

