

1. In the given data:

C.I. f

65 – 85	4
85 – 105	5
105 – 125	13
125 – 145	20
145 – 165	14
165 – 185	7
185 – 205	4

the difference of the upper limit of the median class and the lower limit of the modal class is

(a) 38 (b) 20 (c) 19 (d) 0

2. One of the methods for determining mode is

(a) Mode = 2 Median -3 Mean (b) Mode = 3 Median -2 Mean
 (c) Mode = 2 Mean -3 Median (d) Mode = 3 Mean -2 Median

3. For the following distribution

C.I.	0 – 10	10 – 20	20 – 30	30 – 40	40 – 50
f	20	30	24	40	18

the sum of lower limits of the modal class and the median class is

(a) 20 (b) 30 (c) 40 (d) 50

4. For the following distribution

C.I.	0 – 5	6 – 11	12 – 17	18 – 23	24 – 29
f	26	20	30	16	22

the upper limit of the median class is

(a) 18.5 (b) 18 (c) 17.5 (d) 17

6. While computing mean of grouped data, we assume that the frequencies are

(a) evenly distributed over all the classes (b) centred at the class marks of the classes
 (c) centred at the upper limits of the classes (d) centred at the lower limits of the classes

7. Mode and mean of a data are 12k and 15A. Median of the data is

(a) 12k (b) 14k (c) 15k (d) 16k

8. If $\text{mean} = (3 \text{ median} - \text{mode})/k$, then the value of k is

(a) 1 (b) 2 (c) $1/2$ (d) $3/2$

9. The median of set of 9 distinct observations is 20.5. If each of the largest 4 observations of the set is increased by 2, then the median of the new set

(a) is increased by 2 (b) is decreased by 2
 (c) is two times of the original number (d) Remains the same as that of the original set.

x	10	30	50	70	90
Y	17	$5p + 3$	32	$7p - 11$	19

23. If the mode of the following data 4, 3, 2, 5, p, 4, 5, 1, 7, 3, 2, 1 is 3, then value of p is -
 (a) 4 (b) 3 (c) 2 (d) 11

24. For the following distribution

Class	0 – 8	8 – 16	16 – 24	24 – 32	32 – 40
Frequency	12	26	10	9	15

The sum of upper limits of the median class and modal class is

(a) 32 (b) 16 (c) 40 (d) 24

25. For the following distribution

Class	0 – 5	5 – 10	10 – 15	15 – 20	20 – 25	25 – 30	30 – 35
Frequency	16	12	20	18	9	15	10

The sum of lower limits of the median class and modal class is

(a) 25 (b) 30 (c) 15 (d) 5

26. The difference of the upper limit of the median class and the lower limit of the modal class is

(a) 20 (b) 19 (c) 21 (d) 0

