

Secant: A line, which intersects a circle in two distinct points, is called a secant.

Tangent: A line meeting a circle only in one point is called a tangent to the circle at that point.

The point at which the tangent line meets the circle is called the point of contact.

Length of tangent: The length of the line segment of the tangent between a given point and the given point of contact with the circle is called the length of the tangent from the point to the circle.

Theorem 1 : The tangent at any point of a circle is perpendicular to the radius through the point of contact.

Given : A circle with centre O and a tangent AB at a point P of the circle.

To prove : $OP \perp AB$

Construction :

Take a point Q on AB. Join OQ.

Proof : Q is a point on the tangent AB, other than the point of contact P.

\therefore Q lies outside the circle.

Let OQ intersect the circle at R.

Then, $OR < OQ$

..... (i)

But, $OP = OR$

[radii of the same circle]. (ii)

From (i) and (ii)

$\therefore OP < OQ$

OP is the shortest distance between the point O and the line AB.

But, the shortest distance between a point and a line is the perpendicular distance.

$\therefore OP \perp AB$.

Theorem 2 : The lengths of tangents drawn from an external point to a circle are equal.

Given : Two tangents AP and AQ are drawn from a point A to a circle with centre O.

To prove : $AP = AQ$

Construction : Join OP, OQ and OA.

Proof : AP is a tangent at P and OP is the radius through P.

$\therefore OP \perp AP$

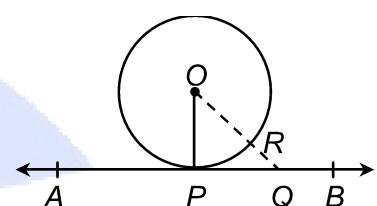
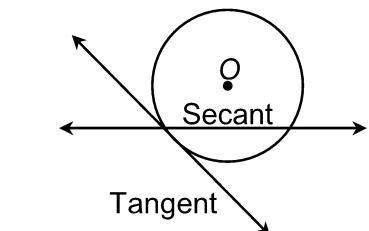
Similarly, $OQ \perp AQ$

In the right $\triangle OPA$ and $\triangle OQA$, we have

$$OP = OQ$$

[radii of the same circle]

$$OA = OA$$



[common]

$$\angle OPA = \angle OQA$$

[both 90°]

$$\therefore \triangle OPA \cong \triangle OQA$$

[by RHS-congruence]

..... (i)

..... (ii)

..... (iii)

..... (iv)

..... (v)

..... (vi)

..... (vii)

..... (viii)

..... (ix)

..... (x)

..... (xi)

..... (xii)

..... (xiii)

..... (xiv)

..... (xv)

..... (xvi)

..... (xvii)

..... (xviii)

..... (xix)

..... (xx)

..... (xxi)

..... (xxii)

..... (xxiii)

..... (xxiv)

..... (xxv)

..... (xxvi)

..... (xxvii)

..... (xxviii)

..... (xxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxviii)

..... (xxxix)

..... (xxx)

..... (xxxi)

..... (xxxii)

..... (xxxiii)

..... (xxxiv)

..... (xxxv)

..... (xxxvi)

..... (xxxvii)

..... (xxxv

Hence, $AP = AQ$. [cpct]

Also $\angle OAP = \angle OAQ$ [cpct]

$\therefore OA$ is the angle bisector of $\angle PAQ$.

