

1. What is 18^{th} term of the sequence defined by $a_n = \frac{n(n-3)}{n+4}$

2. Write the A.P., when the first term a is 10 and common difference d is 10.

3. For the following A.P.'s write the first term and the common difference:

(i) $3, 1, -1, -3, \dots$ (ii) $\frac{1}{3}, \frac{5}{3}, \frac{9}{3}, \frac{13}{3}, \dots$ (iii) $0.6, 1.7, 2.8, \dots$

4. Find the 18^{th} term and n^{th} term for the sequence $7, 4, 1, -2, -5, \dots$

5. Which term of the A.P. $7, 12, 17, \dots$ is 87?

6. Find the 5^{th} term from the end of the AP, $17, 14, 11, \dots, -40$

7. If $2x, x+10, 3x+2$ are in A.P., find the value of x .

8. If the numbers a, b, c, d, e form an A.P., then find the value of $a - 4b + 6c - 4d + e$.

9. Find the sum of the first

(i) 100 natural numbers (ii) n natural numbers.

10. If the sum of 7 term of an A.P. is 49 and that of 17 term is 289, find the sum of n terms.