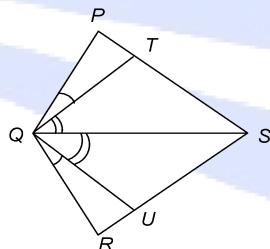


1. In figure O is the mid-point of AB and CD. Prove that

(i) $\Delta AOC \cong \Delta BOD$ (ii) $AC = BD$ and (iii) $AC \parallel BD$

2. In figure it is given that $AE = AD$ and $BD = CE$. Prove that $\Delta AEB \cong \Delta ADC$

3. Suppose line segments AB and CD intersect at O in such a way that $AO = OD$ and $OB = OC$. Prove that $AC = BD$ but AC may not be parallel to BD .

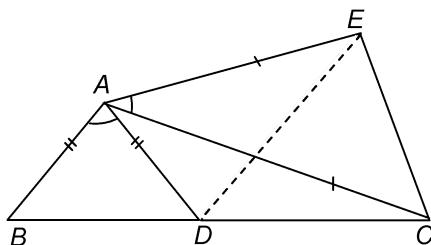

4. If D is the mid-point of the hypotenuse AC of a right triangle ABC, prove that

$$BD = \frac{1}{2}AC$$

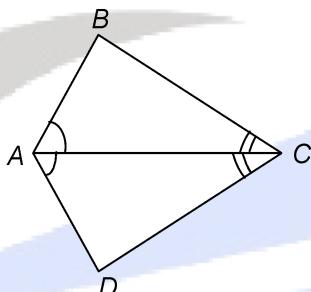
5. Prove that ΔABC is isosceles if any one of the following holds :

(i) Altitude AD bisects BC
(ii) Median AD is perpendicular to the base BC

6. In figure, PQRS is a quadrilateral and T and U are respectively points on PS and RS such that $PQ = RQ$, $\angle PQT = \angle RQU$ and $\angle TQS = \angle UQS$. Prove that $QT = QU$.

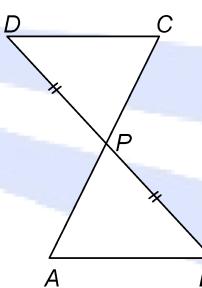


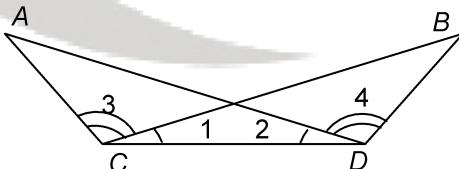
7. In right triangle ABC, right angle at C, M is the mid-point of the hypotenuse AB. C is joined to M and produced to a point D such that $DM = CM$. Point D is joined to point B. Show that


(i) $\Delta AMC \cong \Delta BMD$ (ii) $\angle DBC = \angle ACB$

(iii) $\Delta DBC \cong \Delta ACB$ (iv) $CM = \frac{1}{2}AB$

8. In figure, $AC = AE$, $AB = AD$ and $\angle BAD = \angle EAC$. Prove that $BC = DE$.

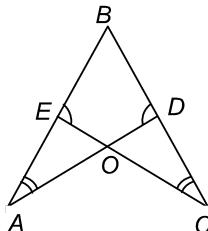

9. In figure, diagonal AC of a quadrilateral ABCD bisects the angles A and C. Prove that AB = AD and CB = CD.


10. AB is a line segment, AX and BY are two equal segment drawn on opposite sides of line AB such that $AX \parallel BY$. If AB and XY intersect each other at P, prove that
 (i) $\Delta APX \cong \Delta BPY$ (ii) AB and XY bisect each other

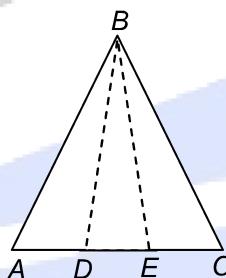
11. ℓ and m are two parallel lines intersected by another pair of parallel lines p and q as shown in figure. Show that $\Delta ABC \cong \Delta CDA$.

12. In figure, if $AB \parallel DC$ and P is the mid-point of BD, prove that P is also the mid-point of AC.

13. In figure, $\angle BCD = \angle ADC$ and $\angle ACB = \angle BDA$. Prove that $AD = BC$ and $\angle A = \angle B$

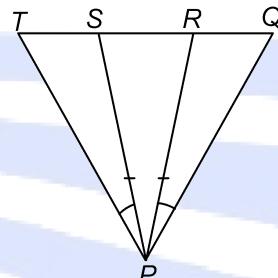


14. In two right triangles, one side and an acute angle of one triangle are equal to one side and the corresponding acute angle of the other triangle. Prove that the two triangles are congruent.

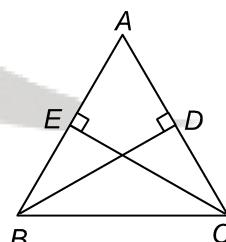

15. ΔABC is an isosceles triangle with $AB = AC$. Side BA is produced to D such that $AB = AD$. Prove that $\angle BCD$ is a right angle.

16. If ΔABC is an isosceles triangle with $AB = AC$. Prove that the perpendiculars from the vertices B and C to their opposite sides are equal.

17. In figure, it is given that $\angle A = \angle C$ and $AB = BC$. Prove that $\Delta ABD \cong \Delta CBE$.



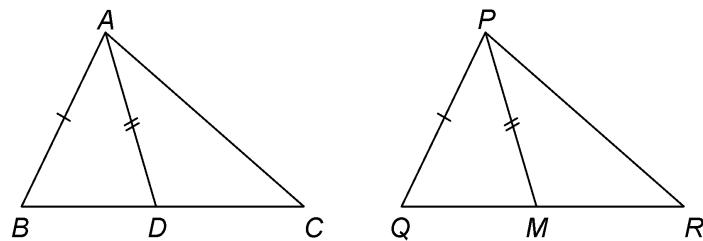
18. In figure, it is given that $AB = BC$ and $AD = EC$. Prove that $\Delta ABE \cong \Delta CBD$.



19. In right angles triangle, one acute angle is double the other. Prove that the hypotenuse is double the smallest side.

20. In figure, $PS = PR$, $\angle TPS = \angle QPR$. Prove that $PT = PQ$.

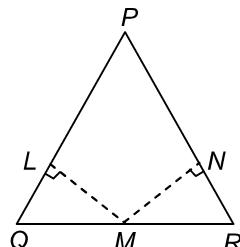
21. In figure, BD and CE are two altitudes of a ΔABC such that $BD = CE$. Prove that ΔABC is isosceles.

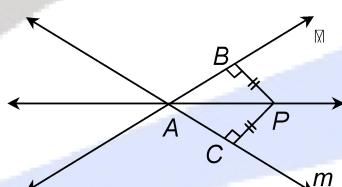


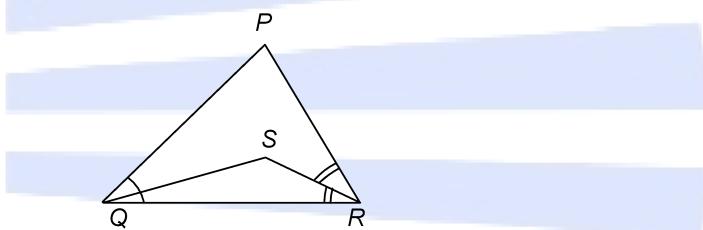
22. ABCD is a parallelogram, if the two diagonals are equal, find the measure of $\angle ABC$.

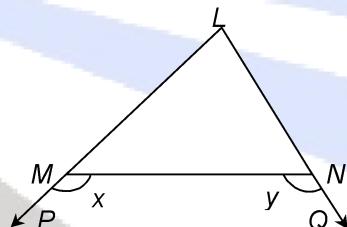
23. If two isosceles triangles have a common base, prove that the line joining their vertices bisects them at right angles.

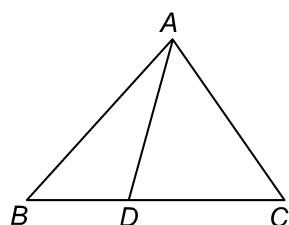
24. In figure, two sides AB and BC and the median AD of ΔABC are equal respectively to the two sides PQ and QR and the median PM of the other triangle PQR. Prove that


(i) $\Delta ABD \cong \Delta PQM$ (ii) $\Delta ABC \cong \Delta PQR$

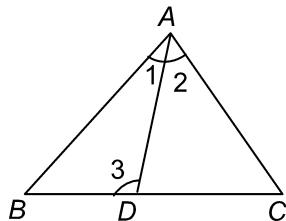

25. AD, BE and CE the altitudes of ΔABC are equal. Prove that ΔABC is an equilateral triangle.


26. In figure, it is given that $LM = MN$, $QM = MR$, $ML \perp PQ$ and $MN \perp PR$. Prove that $PQ = PR$.

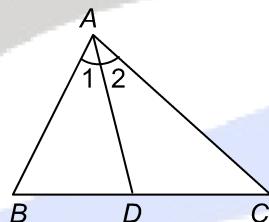

27. In figure P is a point equidistant from two lines ℓ and m intersecting at a point A. Show that AP bisects the angle between them.


28. In figure, $PQ > PR$ and RS are the bisectors of $\angle Q$ and $\angle R$ respectively. Prove that $SQ > SR$.

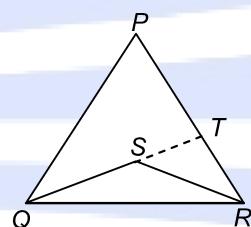
29. In figure, sides LM and LN of $\triangle LMN$ are extended to P and Q respectively. If $x > y$, show that $LM > LN$.


30. In figure, $AB > AC$. Show that $AB > AD$.

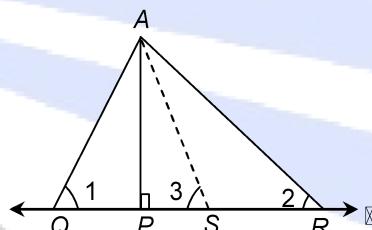
31. If D is any point on the base BC produced, of an isosceles triangle ABC, prove that $AD > AB$.

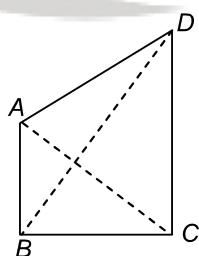


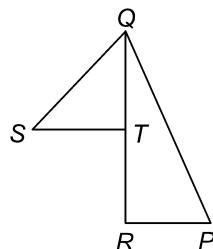
32. In figure, if AD is the bisector of $\angle A$, show that:



(i) $AB > BD$ (ii) $AC > CD$


33. In figure, $AC > AB$ and AD is the bisector of $\angle A$. Show that $\angle ADC > \angle ADB$.


34. In figure, PQR is a triangle and S is any point in its interior, show that $SQ + SR < PQ + PR$.


35. In figure, $AP \perp \text{+}$ and $PR > PQ$. Show that $AR > AQ$.

36. In figure, AB and CD are respectively the smallest and longest sides of a quadrilateral $ABCD$. Show that $\angle A > \angle C$ and $\angle B > \angle D$.

37. In figure, T is a point on side QR of ΔPQR and S is a point such that $RT = ST$. Prove that $PQ + PR > QS$.

