
- If the measures of angles of a triangle are in the ratio of 3: 4: 5, what is the measure of the smallest angle of the triangle?

(a) 25° (b) 30° (c) 45° (d) 60°
- Which of the following is not a criterion for congruence of triangles?

(a) SAS (b) SSA (c) ASA (d) SSS
- If ABC and DEF are two triangles such that $\triangle ABC \cong \triangle FDE$ and $AB = 5\text{cm}$, $\angle B = 40^\circ$ and $\angle A = 80^\circ$. Then, which of the following is true?

(a) $DF = 5\text{cm}$, $\angle F = 60^\circ$ (b) $DE = 5\text{cm}$, $\angle E = 60^\circ$
 (c) $DF = 5\text{cm}$, $\angle E = 60^\circ$ (d) $DE = 5\text{cm}$, $\angle D = 40^\circ$
- In a $\triangle ABC$, if $\angle A = \angle B + \angle C$, then $\triangle ABC$ is

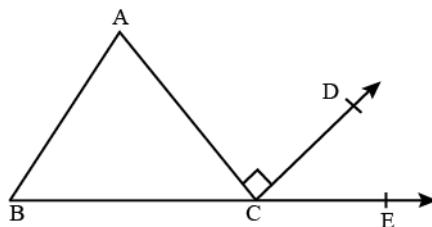
(a) isosceles triangle (b) equilateral triangle (c) right triangle (d) none of these
- In Fig., $BC \parallel PQ$, BP and CQ intersect at O . If $x + y = 80^\circ$ and $x - y = 55^\circ$, then $z =$

(a) 80° (b) 55° (c) 90° (d) 100°

- In Fig., $\angle A + \angle B + \angle C + \angle D + \angle E + \angle F =$

(a) 180° (b) 360° (c) 540° (d) 90°

- In Fig., if PT is the bisector of $\angle QPR$ in $\triangle PQR$, $\angle PQR = 50^\circ$, $\angle PRQ = 30^\circ$ and $PS \perp QR$, then $x =$


(a) 40° (b) 20° (c) 30° (d) 10°

- Which of the following is not a criterion for congruence of triangles?

(a) SAS (b) ASA (c) SSA (d) SSS

9. In two triangles ABC and PQR, if $AB = QR, BC = RP$ and $CA = PQ$, then
 (a) $\triangle ABC \cong \triangle PQR$ (b) $\triangle CBA \cong \triangle PRQ$ (c) $\triangle BAC \cong \triangle RPQ$ (d) $\triangle PQR \cong \triangle BCA$

10. In a $\triangle ABC$, it is given that $\angle A : \angle B : \angle C = 3 : 2 : 1$ and $\angle ACD = 90^\circ$. If B C is produced to E, then $\angle ECD =$

(a) 60° (b) 30° (c) 50° (d) 40°

11. An exterior angle of a triangle is equal to 100° and two interior opposite angles are equal. Each of these angles is equal to
 (a) 75° (b) 80° (c) 40° (d) 50°

12. In $\triangle ABC$, if $\angle A = 100^\circ$, AD bisects $\angle A$ and $AD \perp BC$. Then, $\angle B =$
 (a) 50° (b) 90° (c) 40° (d) 100°

13. An exterior angle of a triangle is 108° and its interior opposite angles are in the ratio 4: 5. The angles of the triangle are
 (a) $48^\circ, 60^\circ, 72^\circ$ (b) $50^\circ, 60^\circ, 70^\circ$ (c) $52^\circ, 56^\circ, 72^\circ$ (d) $42^\circ, 60^\circ, 76^\circ$

14. In a $\triangle ABC$, if $\angle A = 60^\circ, \angle B = 80^\circ$ and the bisectors of $\angle B$ and $\angle C$ meet at O, then $\angle BOC =$
 (a) 60° (b) 120° (c) 150° (d) 30°