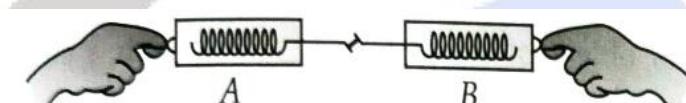


19. In a rocket, fuel burns at the rate of 1kg s^{-1} . This fuel is ejected from the rocket with a velocity of 60km s^{-1} . The force exerted on the rocket is equal to

(a) 6000N (b) 60000N (c) 60N (d) 600N .

20. A particle of mass 0.3kg is subjected to a force $F = kx$ with $k = 15\text{N/m}$ and x being its distance from the origin. What will be its initial acceleration if it is released from a point 20cm away from the origin?


(a) 5ms^{-2} (b) 10ms^{-2} (c) 3ms^{-2} (d) 15ms^{-2}

21. A man is standing on a boat in still water. If he walks towards the shore the boat will
 (a) move away from the shore (b) remain stationary
 (c) move towards the shore (d) sink.

22. A cannon after firing recoils due to
 (a) conservation of energy (b) Newton's third law of motion
 (c) Newton's first law of motion (d) none of these

23. Choose the correct statement(s).
 (a) Action and reaction forces act on same object.
 (b) Action and reaction forces act on different objects.
 (c) Both (a) and (b) are possible.
 (d) Neither (a) nor (b) is correct.

24. Consider two spring balances hooked as shown in the figure. We pull them in opposite direction. If the reading shown by A is 1.5N, then the reading shown by B will be

(a) 1.5N (b) 2.5N (c) 3.0N (d) zero.

25. According to the third law of motion, action and reaction
 (a) always act on the same body
 (b) always act on different bodies in opposite directions
 (c) have same magnitude and directions
 (d) act on either body at normal to each other.

26. A goalkeeper in a game of football pulls his hands backwards after holding the ball shot at the goal. This enables the goal keeper to
 (a) exert larger force on the ball
 (b) reduce the force exerted by the ball on hands
 (c) increase the rate of change of momentum
 (d) decrease the rate of change of momentum.

27. An object of mass 2kg is sliding with a constant velocity of 4ms^{-1} on a frictionless horizontal table. The force required to keep the object moving with the same velocity is
 (a) 32N (b) 0N (c) 2N (d) 8N.

28. A water tanker filled up to $\frac{2}{3}$ of its height is moving with a uniform speed. On sudden application of the brake the water in the tank would
 (a) move backward (b) move forward
 (c) be unaffected (d) rise upwards.

Assertion-Reason Codes:

(a) If both Assertion and Reason are true and Reason is the correct explanation of Assertion.

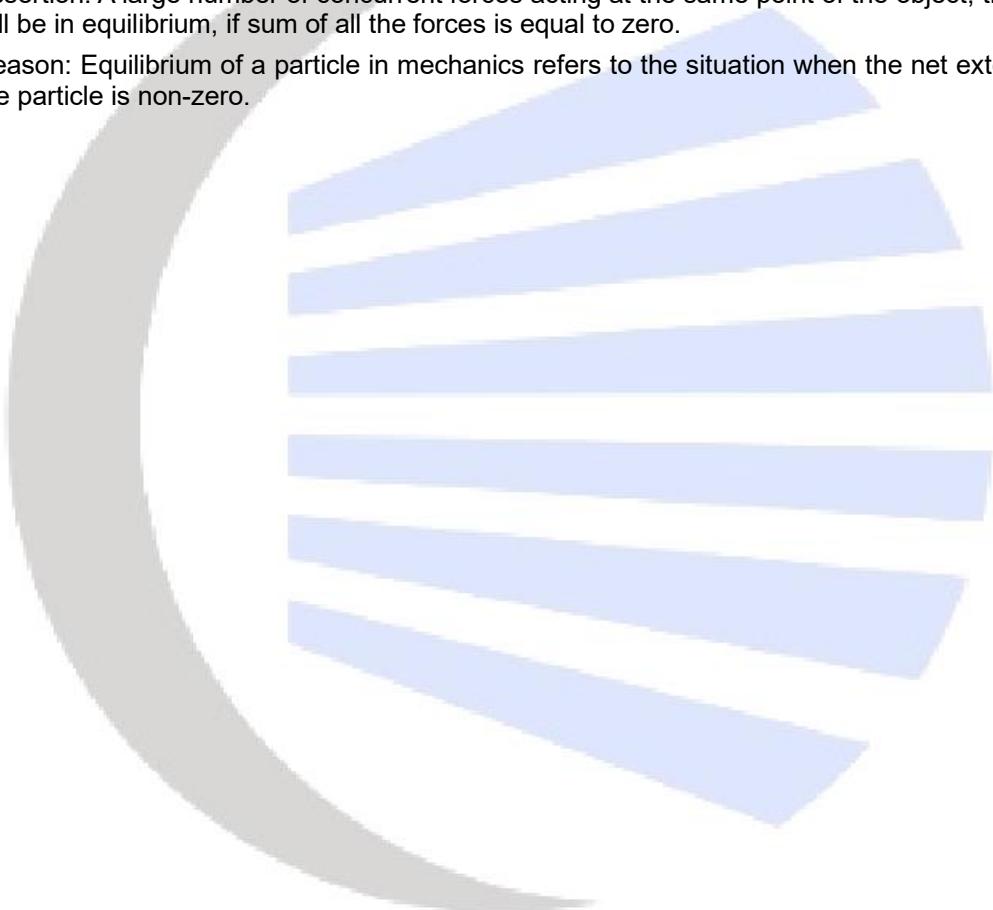
(b) If both Assertion and Reason are true and Reason is not the correct explanation of Assertion.

(c) If Assertion is true but Reason is false.

(d) If both Assertion and Reason are false.

29. Assertion: If the net external force on the body is zero, then its acceleration is zero.
Reason: Acceleration does not depend on force.

30. Assertion: The slope of momentum versus time curve give us the acceleration.
Reason: Acceleration is given by the rate of change of momentum.


31. Assertion: A player lowers his hands while catching a cricket ball.
Reason: The time of catch increases when a player lowers his hand while catching a ball.

32. Assertion: A bullet is fired from a rifle. If the rifle recoils freely, the kinetic energy of rifle is more than that of the bullet.
Reason: In the case of rifle-bullet system the law of conservation of momentum is violated.

33. Assertion: An object can accelerate in the absence of external force.
Reason: Newton's second law is not applicable on object.

34. Assertion: From Newton's second law of motion, impulse is equal to change in momentum.
Reason: Impulse and momentum have different SI units.

35. Assertion: A large number of concurrent forces acting at the same point of the object, then the object will be in equilibrium, if sum of all the forces is equal to zero.
Reason: Equilibrium of a particle in mechanics refers to the situation when the net external force on the particle is non-zero.

